Imaging-guided PCI

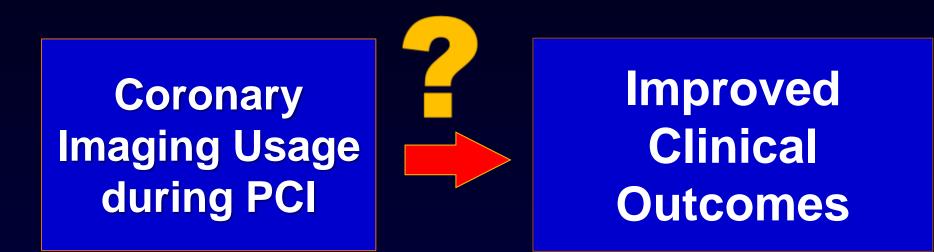
Myeong-Ki Hong, MD. PhD

Professor of Medicine

Cardiology Division, Severance Cardiovascular Hospital Yonsei University College of Medicine, Seoul, Korea

Conflict of Interest

• I have nothing to disclose



2014 ESC/EACTS Guidelines

IVUS in selected patients to optimize stent implantation.	lla	B
IVUS to assess severity and optimize treatment of unprotected left main lesions.	lla	B
IVUS or OCT to assess mechanisms of stent failure.	lla	С
OCT in selected patients to optimize stent implantation.	IIb	С

Evidence for Use of Coronary Imaging

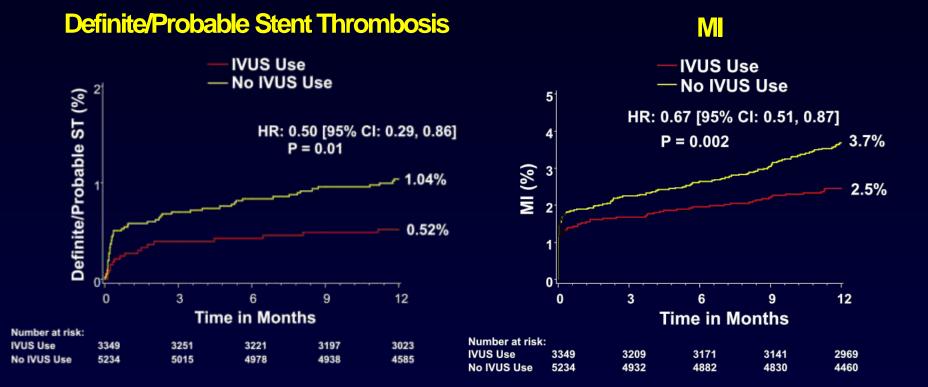
 Recently, many evidences demonstrating the clinical usefulness of coronary imaging have been accumulated since the prior guidelines were released.

Clinical benefit of IVUS-guided PCI

YONSEI UNIVERSITY COLLEGE OF MEDICINE

Recent observational studies comparing clinical outcomes between IVUS-guided an angiography-guided PCI

Study	Year	N (IVUS/angio)	Enrolled patients	FU, m	Major findings (IVUS vs. angiography)
Witzenbichler et al. ⁽¹⁾	2014	3349/5234	All comers	12	Definite/probable ST: 0.6% vs. 1.0%, p=0.003 MI: 2.5% vs. 3.7%, p=0.004 Cardiac death, ST, MI; 3.1% vs. 4.7%, p=0.002
Roy et al. ⁽²⁾	2008	884/884 by matching	All comers	12	Definite ST: 0.7% vs. 2.0%, p=0.014
Park et al. ⁽³⁾	2013	463/463 by matching	Nearly all comers	12	Cardiac death, MI, TLR: 4.3% vs. 2.4, p=0.047
Kim et al. ⁽⁴⁾	2011	487/487 by matching	Non-left main bifurcation	36	Death or MI: 3.8% vs. 7.8%, p=0.03
Hong et al. ⁽⁵⁾	2014	201/201 by matching	Chronic total occlusion	24	Definite/probable ST: 0% vs. 3.0%, p=0.014 MI: 1.0% vs. 4.0%, p=0.058
de la Torre Hernandez et al. ⁽⁶⁾	2014	505/505 by matching	Left main lesions	36	Cardiac death, MI, TLR: 11% vs. 16%, p=0.04 Definite/probable ST: 0.6% vs. 2.2%, p=0.04


(2) Roy P, et al. Eur Heart J. 2008;29:1851-1857

(3) Park KW et al. Int J Cardiol. 2013;167:721-726

(5) Hong SJ et al. Am J Cardiol. 2014;114:534-540
(6) de la Torre Hernandez JM et al. JACC Cardiovasc Interv. 2014;7:244-254

ADAPT-DES substudy (n=8,583 pts, IVUS=3,349 pts and no IVUS=5,234 pts

IVUS guidance during DES PCI may result in less stent thrombosis as well as fewer myocardial infarctions and MACEs

Witzenbichler B, et al. Circulation 2014;129: 463-470

Recent randomized studies comparing clinical usefulness between IVUS-guided and angiography-guided PCI

Study	N (IVUS/ angio)	Enrolled patients	FU (m)	Primary endpoint	Major findings	
Jakabacin et al. ⁽¹⁾	105/105	Complex and high clinical risk profile	18	Composite of death, MI, TLR	No significant differences (11% vs. 12%).	
Chieffo et al. ⁽²⁾	142/142	Complex lesions	24	Post-procedural MLD	IVUS group had greater MLD (2.70 mm vs. 2.51 mm)	
Kim et al. ⁽³⁾	269/274	Long lesions	12	Composite of cardiac death, MI, ST, or TVR	IVUS group had lower MACE by per-protocol analysis (4% vs. 8%).	
CTO-IVUS ⁽⁴⁾	201/201	Chronic total occlusion	12	Cardiac death	No differences in primary endpoint; but IVUS group had lower the composite of cardiac death, MI, or TVR.	
AIR-CTO ⁽⁵⁾	115/115	Chronic total occlusion	12	Late lumen loss	IVUS group had a lesser LLL (0.28 vs. 0.46 mm, p=0.025).	
IVUS-XPL ⁽⁶⁾	700/700	Long lesions	12	Composite of cardiac death, MI, or TLR	IVUS group had lower primary endpoint (2.9% vs. 5.8%, p=0.007)	
(1) Jakabcin J, et al. Catheter Cardiovasc Interv. 2010;75:578-583 (4) Kim BK, et al. Circ Cardiovasc Interv 2015:8:e002592 (2) Chieffo A et al. Am Heart J. 2013:165:65-72 (5) Tian NL et al. EuroIntervention 2015:10:1409-17						

(2) Chieffo A et al. Am Heart J. 2013;165:65-72
(3) Kim JS et al. JACC Cardiovasc Interv. 2013;6:369-376

(6) Hong SJ, et al. JAMA. 2015;314:2155-2163

Meta-analysis of 7 randomized trials: IVUS vs. angio -guided (first and next-generation) DES implantation

Event: cardiac death, MI, TLR

Study-level meta-analysis

IVUS better Angio better

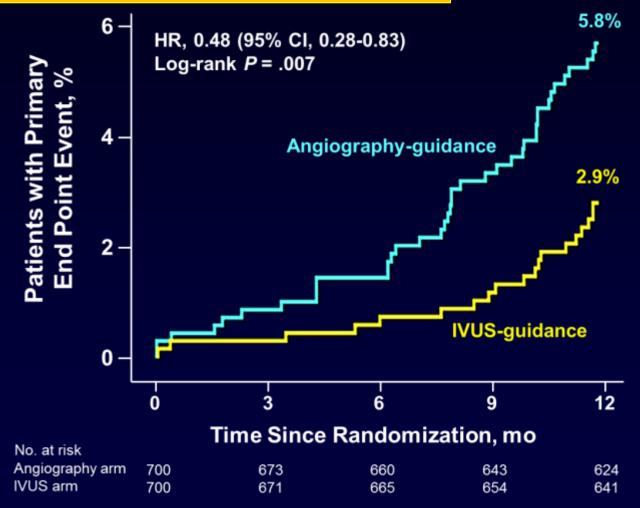
Islam Y. Elgendy et al. Circ Cardiovasc Interv. 2016;9:e003700

Effect of IVUS vs. Angiography-Guided Everolimus-Eluting Stent Implantation in Long Coronary Lesions: the IVUS-XPL Trial

EES implantation with IVUS guidance, n=700 EES implantation with angiography guidance, n=700

Clinical follow-up at 12 months Primary end point: MACE

Cardiac death, target-lesion related MI, and ischemia-driven TLR


Hong SJ, Kim BK, Hong MK (corresponding author). JAMA 2015;314:2155-63 and 2015 AHA Late Breaking Clinical Trials

Clinicaltrial.gov Identifier: NCT01308281

IVUS-XPL: Randomized Trial

MACE: Cardiac death, MI, or TLR

Hong SJ, Kim BK, Hong MK (corresponding author). JAMA 2015:314:2155-63

IVUS-XPL: Randomized Trial

	IVUS- guidance (n=700)	Angiography- guidance (n=700)	Hazard ratio (95% CI)	Log- Rank <i>P</i> value
End Point				
E	19 (2.9%)	39 (5.8%)	0.48 (0.28–0.83)	.007
ry End Point				
iac death	3 (0.4%)	5 (0.7%)	0.60 (0.14-2.52)	.48
et lesion related MI	0	1 (0.1%)	-	.32
emia-driven TLR	17 (2.5%)	33 (5.0%)	0.51 (0.28-0.91)	.02
t thrombosis	2 (0.3%)	2 (0.3%)	1.00 (0.14-7.10)	1.00
Acute	1 (0.1%)	1 (0.1%)	-	-
Sub-acute	1 (0.1%)	0	-	-
.ate	0	1 (0.1%)	-	-
	E ary End Point iac death et lesion related MI emia-driven TLR t thrombosis Acute Sub-acute	guidance (n=700)End PointE19 (2.9%)ary End Pointiac death3 (0.4%)et lesion related MI0emia-driven TLR17 (2.5%)t thrombosis2 (0.3%)acute1 (0.1%)bub-acute1 (0.1%)	guidance (n=700)guidance (n=700)End Point19 (2.9%)39 (5.8%)E19 (2.9%)39 (5.8%)ary End Point $3 (0.4\%)$ $5 (0.7\%)$ iac death $3 (0.4\%)$ $5 (0.7\%)$ et lesion related MI0 $1 (0.1\%)$ emia-driven TLR17 (2.5%) $33 (5.0\%)$ t thrombosis $2 (0.3\%)$ $2 (0.3\%)$ Acute $1 (0.1\%)$ $1 (0.1\%)$ 6ub-acute $1 (0.1\%)$ 0	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $

Hong SJ, Kim BK, Hong MK (corresponding author). JAMA 2015 :314:2155-63

From the IVUS-XPL Trial

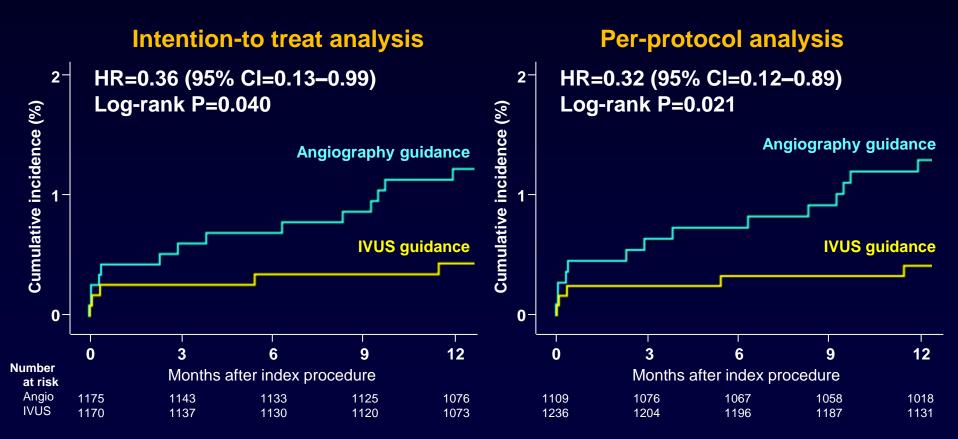
Can IVUS reduce only TLR?

• Can IVUS improve HARD CLINICAL OUTCOMES such as cardiac death, MI, or stent thrombosis?

• Is there patient-level meta-analysis with second-generation DES alone?

Patients level meta-analysis: 3 RCTs with 2,345 Patients

Trials (Year)	No. of patients		Lesion	Primary endpoint	
	IVUS- group	Angio- group	- characteristics		
RESET-IVUS (2013)	269	274	Long lesions	MACE (Composite of cardiac death, MI, TVR, or stent thrombosis)	
CTO-IVUS (2014)	201	201	СТО	Cardiac death	
IVUS-XPL (2015)	700	700	Long lesions	MACE (Composite of cardiac death, target-lesion related MI, and ischemia-driven TLR)	

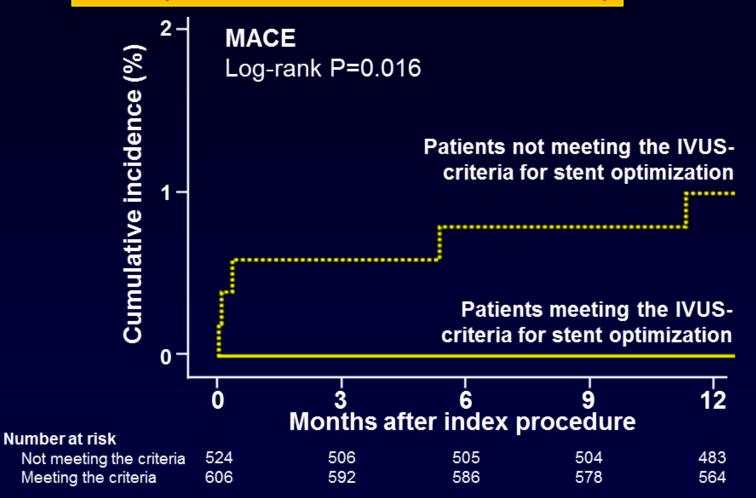

1170 1175

Shin DH, Hong SJ, Hong MK (corresponding author). JACC Intv 2016:9; 2232-9

Primary Endpoint: MACE

MACE (cardiac death, MI, or stent thrombosis)

Shin DH, Hong SJ, Hong MK (corresponding author). JACC Intv 2016:9; 2232-9


Stent optimization by IVUS

 (2013) segments CTO-IVUS Minimal stent a lumen area Stent area at Covessel area per of complete stent 						
 (2014) Iumen area Stent area at C⁻ vessel area per Complete stent IVUS-XPL Minimal CSA ≥ or segments 	CSA at distal reference 49% (126/256)					
(2015) segments						
Overall	CSA at distal reference 54% (363/678)					
	54% (606/1130)					
Shin DH, Hong SJ, Hong MK (corresponding author). JACC Intv 2017:10; 418						

Stent optimization by IVUS

MACE (cardiac death, MI, or stent thrombosis)

Shin DH, Hong SJ, Hong MK (corresponding author). JACC Intv 2017:10; 418

Clinical benefit of OCT-guided PCI

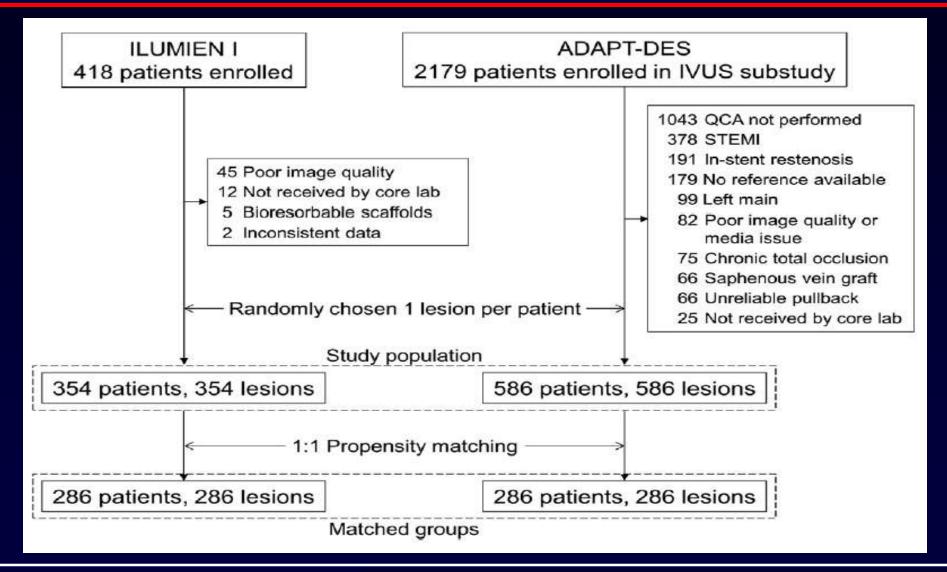
OCT-guided PCI (CLI-OPCI Study)

er Retrospective ational Study	Angiographic guidance group (n=335)	Angiographic plus OCT guidance group (n=335)	<i>p</i> -value
In-hospital events			
Cardiac death	3 (0.9%)	<mark>2 (</mark> 0.6%)	1.0
Non-fatal myocardial infarction	22 (6.5%)	13 (3.9%)	0.118
Events at 1-year follow-up			
Death	23 (6.9%)	<mark>11 (</mark> 3.3%)	0.035
Cardiac death	15 (4.5%)	4 (1.2%)	0.010
Myocardial infarction	29 (8.7%)	18 (5.4%)	0.096
Target lesion repeat revascularisation	11 (3.3%)	11 (3.3%)	1.0

OCT guidance on top of angiography was associated with significant clinical benefits, specifically a reduction in the 1-year rate of cardiac death or MI

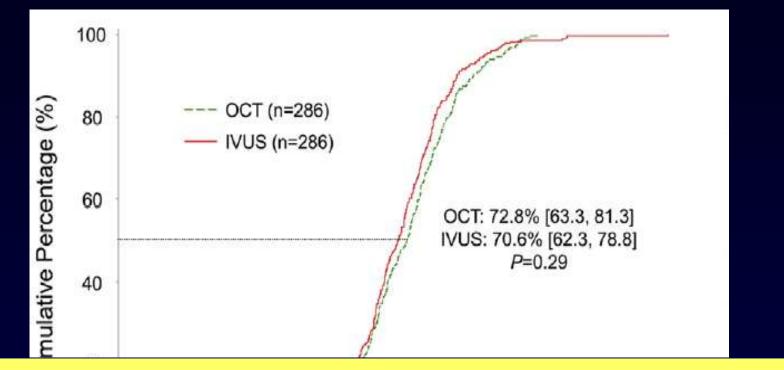
50 (15.1%)

or repeat revascularisation


Prati F, et al, EuroIntervention 2012; 8:823-829

0.034

32 (9.6%)

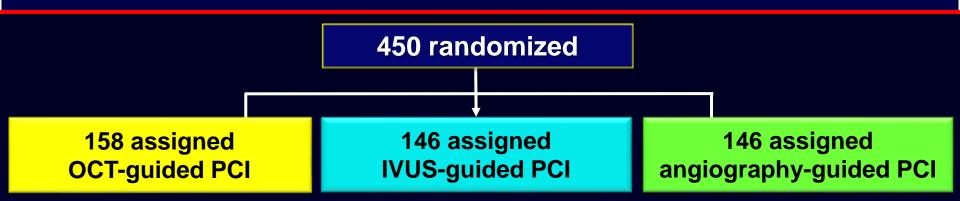

SEVERANCE CARDIOVASCULAR HOSPITAL

Comparison of Stent Expansion ILUMIEN II (OCT vs. IVUS)

SEVERANCE CARDIOVASCULAR HOSPITAL Maehara A et al. JACC Cardiovasc Interv 2015;8:1704-8

Comparison of Stent Expansion ILUMIEN II (OCT vs. IVUS)

OCT and IVUS guidance resulted in a comparable degree of stent expansion


Stent Expansion (%)

SEVERANCE CARDIOVASCULAR HOSPITAL

Maehara A et al. JACC Cardiovasc Interv 2015;8:1704-8

ILUMEIN III

OCT compared to IVUS and Angiography to Guide Coronary Stent Implantation

Primary end points: Post-PCI MSA assessed by OCT

	OCT (n=140)	IVUS (n=135)	Angiography (n=140)	OCT vs IVUS p value	OCT vs angiography p value
Minimum stent area (mm²)	5.79 (4.54-7.34)	5.89 (4.67-7.80)	5·49 (4·39-6·59)	0.42	0.12
Minimum stent expansion (%)	87.6% (16.6)	86.5% (15.9)	82.9% (12.9)	0.77	0.02
Mean stent expansion (%)	105.8% (97.8–119.8)	106.3% (96.7–116.6)	101.4% (91.9–110.2)	0.63	0.001

OCT-guided PCI using a specific reference segment external elastic lamina-based stent optimization strategy was safe and resulted in similar minimum stent area to that of IVUS-guided PCI.

SEVERANCE CARDIOVASCULAR HOSPITAL

Ali et al. Lancet 2016;388:2618-28

Imaging-guided PCI improved outcomes: WHY?

SEVERANCE CARDIOVASCULAR HOSPITAL

YONSEI UNIVERSITY COLLEGE OF MEDICINE

Comparison of Stent Size From Recent Studies

Mean Stent Diameter

	IVUS- guidance N	Angio- guidance N	IVUS- guidance (mm)	Angio- guidance (mm)	P-value
Chieffo et al. ⁽¹⁾	142	142	2.95±0.38	2.86±0.36	0.19
CTO-IVUS ⁽²⁾	201	201	2.91±0.52	2.85±0.41	0.23
ADAPT-DES ⁽³⁾	3349	5234	3.4±0.6	3.0±0.7	<0.001
AIR-CTO ⁽⁴⁾	115	115	3.05±0.46	2.86±0.37	0.001
Hong et al. ⁽⁵⁾	201	201	2.96±0.38	2.83±0.37	0.001
EXCELLENT ⁽⁶⁾	463	463	3.21±0.43	3.04±0.42	<0.001

(1) Chieffo A et al, Am Heart J. 2013;165:65-72

(2) Kim BK, et al. Circ Cardiovasc Interv 2015:8:e002592

(3) Witzenbichler B et al. Circulation. 2014;129:463-470

(4) Tian NL et al. EuroIntervention 2015:10:1409-17

(5) Hong SJ, et al. Am J Cardiol. 2014;114:534-540

(6) Park KW. Int J Cardiol. 2013;167:721-726

Frequency of post-adjuvant ballooning From Recent Studies

Frequency of post-adjuvant ballooning

	IVUS- guidance N	Angio- guidance N	IVUS- guidance (mm)	Angio- guidance (mm)	P-value
CTO-IVUS*(1)	201	201	51.2%	41.3%	0.045
Roy et al. ⁽²⁾	884	884	31.0%	17.7%	<0.001
RESET-IVUS ⁽³⁾	297	246	54.6%	44.5%	0.03
IVUS-XPL ⁽⁴⁾	700	700	76%	57%	<0.001
MOZART ⁽⁵⁾	42	42	95.1%	78.6%	0.048

* High pressure poststent dilation

- (1) Kim BK, et al. Circ Cardiovasc Interv 2015:8:e002592
- (2) Roy P et al. Eur Heart J. 2008;29:1851-1857
- (3) Kim JS et al. JACC Cardiovasc Interv. 2013;6:369-376

(4) Hong SJ, et al. JAMA. 2015;314:2155-2163
(5) Mariani J, Jr., et al. JACC Cardiovasc Interv. 2014;7:1287-1293

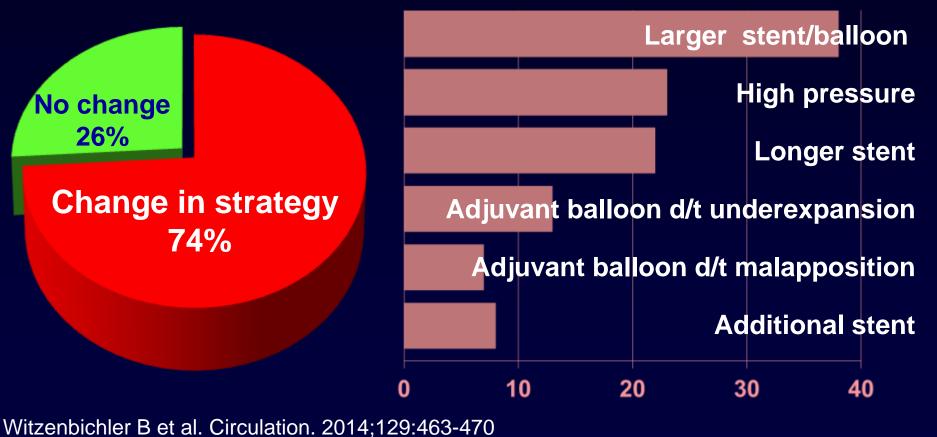
Comparison of Final balloon size From Recent Studies

Final Balloon Size or Balloon Pressure*

	IVUS- guidance N	Angio- guidance N	IVUS- guidance (mm or atm*)	Angio- guidance (mm or Atm*)	P-value
Chieffo et al. ⁽¹⁾	142	142	3.39±0.47	3.15±0.40	0.002
CTO-IVUS ⁽²⁾	201	201	14.6±3.7*	13.8±3.8*	0.040
ADAPT-DES ⁽³⁾	3349	5234	16.9±3.7*	16.7±3.5*	0.13
RESET-IVUS ⁽⁴⁾	297	246	3.2±0.4	3.1±0.3	0.03
IVUS-XPL ⁽⁵⁾	700	700	3.14±0.43	3.04±0.42	<0.001

(1) Chieffo A et al, Am Heart J. 2013;165:65-72

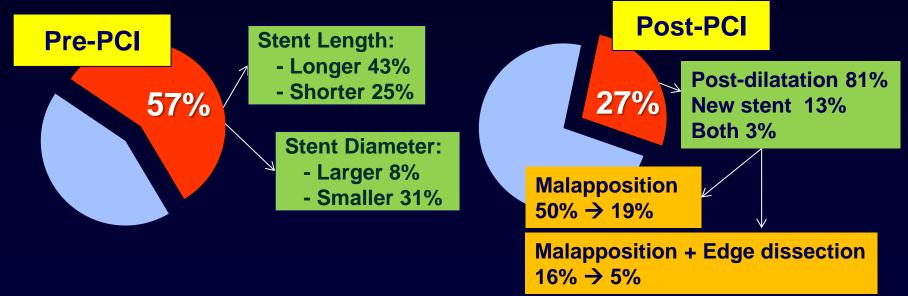
(2) Kim BK, et al. Circ Cardiovasc Interv 2015:8:e002592


(3) Witzenbichler B et al. Circulation. 2014;129:463-470

(4) Kim JS et al. JACC Cardiovasc Interv. 2013;6:369-376 (5) Hong SJ, et al. JAMA. 2015;314:2155-2163

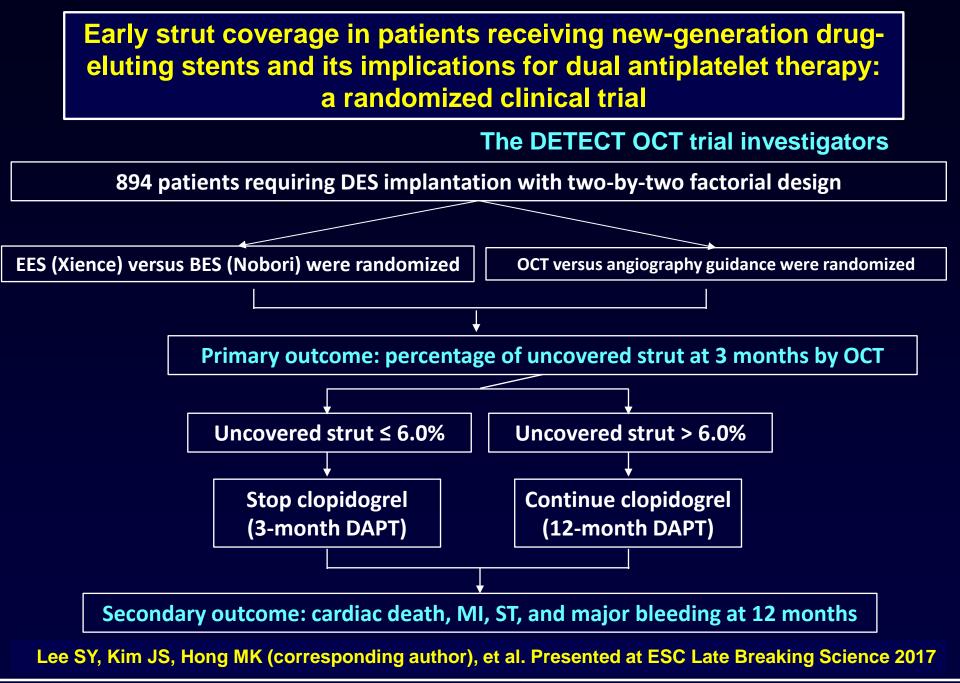
How the IVUS information influenced the procedure? From ADAPT-DES Study

When IVUS was used, the operator was required to report the timing of IVUS imaging (eg, before intervention, after DES, after adjunct balloon inflation) and how the IVUS information influenced the procedure.

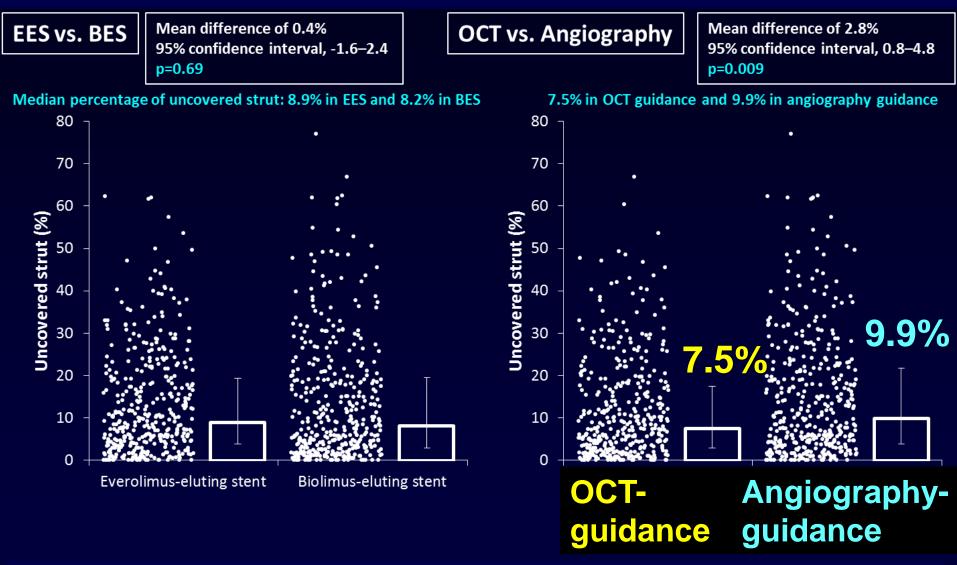


SEVERANCE CARDIOVASCULAR HOSPITAL

From ILUMEIN I Study


 OCT impacted on PCI procedure in 65% of pts either pre-PCI and/or post-PCI

- Post-PCI FFR values were significantly different between optimization groups (lower in cases with pre- and post-PCI reaction to OCT) but no longer different after post-PCI stent optimization.
- MACE events at 30 days were low: death 0.25%, MI 7.7%, repeat PCI 1.7%, and stent thrombosis 0.25%


SEVERANCE CARDIOVASCULAR HOSPITAL

Wijns W, et al, Eur Heart J 2105:36:3346-55

Primary Outcome: percentage of uncovered strut

Lee SY, Kim JS, Hong MK (corresponding author), et al. Presented at ESC Late Breaking Science 2017

SEVERANCE CARDIOVASCULAR HOSPITAL

YONSEI UNIVERSITY COLLEGE OF MEDICINE

Secondary Outcome

	3-month DAPT (n=320)	12-month DAPT (n=459)	Difference (95% CI)	р
Cardiac death	0	0		-
MI	1 (0.3%)	0	0.3% (-0.3– 0.9)	0.4108
Definite or probable ST	1 (0.3%)	0	0.3% (-0.3– 0.9)	0.4108
Bleeding	1 (0.3%)	3 (0.7%)	-0.3% (-1.3– 0.6)	0.5138
Major	0	1	Ē	
Minor	1	2		
Target-vessel revascularization	2 (0.6%)	2 (0.4%)	0.2% (-0.9– 1.2)	0.7175
A composite of cardiac death, MI, definite/probable ST, and major bleeding	1 (0.3%)	1 (0.2%)	0.1% (-0.7– 0.8)	0.7967

Lee SY, Kim JS, Hong MK (corresponding author), et al. Presented at ESC Late Breaking Science 2017

Imaging-guided PCI: Why NOT?

SEVERANCE CARDIOVASCULAR HOSPITAL

YONSEI UNIVERSITY COLLEGE OF MEDICINE

Barriers to implementing an intravascular imaging (1)

Cost with limited reimbursement

Expertise

- Lack of standardization
- Not understanding the image and how to use the information
- Too much information don't know what is/is not important

Barriers to implementing an intravascular imaging (2)

 Need to convince interventional cardiologists of the limitations of relying on coronary angiography alone

Like all medical imaging, IVUS and OCT require an understanding of what is important, what to ignore, and a knowledge of artifacts, limitations, and confounders.

Summary (1)

- 1. IVUS or OCT is recommended in selected patients to optimize stent implantation.
- 2. Many evidences demonstrating the usefulness of coronary imaging have been accumulated since the prior guidelines were released.

3. Coronary imaging influenced the physicians' procedural strategies.

4. The barriers to implementing an intravascular imaging is still cost, expertise and physicians' need.

SEVERANCE CARDIOVASCULAR HOSPITAL

YONSEI UNIVERSITY COLLEGE OF MEDICINE